About us
Our services

Capabilities

Legacy Modernization
Data Platforms
AI & Advanced Analytics

Industries

Automotive
Finance
Manufacturing

Solutions

Databoostr

Data Sharing & Monetization Platform

Cloudboostr

Multicloud Enterprise Kubernetes

Looking for something else?

Contact us for tailored solutions and expert guidance.

Contact
Case studies
Resources

Resources

Blog

Read our blog and stay informed about the industry’s latest trends and technology.

Ready to find your breaking point?

Stay updated with our newsletter.

Subscribe

Insights

Ebooks

Explore our resources and learn about building modern software solutions from experts and practitioners.

Read more
Careers
Contact
Blog
AI
Software development

Train your computer with the Julia programming language - introduction

Daniel Bulanda
Machine Learning Expert Engineer
October 21, 2025
•
5 min read

Table of contents

Heading 2
Heading 3
Heading 4
Heading 5
Heading 6

Schedule a consultation with software experts

Contact us

 As the Julia programming language is becoming very popular in building machine learning applications, we explain its advantages and suggest how to leverage them.

Python and its ecosystem have dominated the machine learning world – that’s an undeniable fact. And it happened for a reason. Ease of use and simple syntax undoubtedly contributed to still growing popularity. The code is understandable by humans, and developers can focus on solving an ML problem instead of focusing on the technical nuances of the language. But certainly, the most significant source of technology success comes from community effort and the availability of useful libraries.

In that context, the Python environment really shines. We can google in five seconds a possible solution for a great majority of issues related to the language, libraries, and useful examples, including theoretical and practical aspects of our intelligent application or scientific work. Most of the machine learning related tutorials and online courses are embedded in the Python ecosystem. If some ML or AI algorithm is worth of community’s attention, there is a huge probability that somebody implemented it as a Python open-source library.

Python is also the "Programming Language of the 2020" award winner. The award is given to the programming language that has the highest rise in ratings in a year based on the TIOBE programming community index (a measure of the popularity of programming languages). It is worth noting that the rise of Python language popularity is strongly correlated with the rise of machine learning popularity.

Equipped with such great technology, why still are we eager to waste a lot of our time looking for something better? Except for such reasons as being bored or the fact that many people don’t like snakes (although the name comes from „Monty Python’s Flying Circus”, a python still remains a snake). We think that the answer is quite simple: because we can do it better.

From Python to Julia

To understand that there is a potential to improve, we can go back to the early nineties when Python was created. It was before 3rd wave of artificial intelligence popularity and before the exponential increase in interest in deep learning. Some hard-to-change design decisions that don’t fit modern machine learning approaches were unavoidable. Python is old, it’s a fact, a great advantage, but also a disadvantage. A lot of great and groundbreaking things happened from the times when Python was born.

While Python has dominated the ML world, a great alternative has emerged for anyone who expects more. The Julia Language was created in 2009 by a four-person team from MIT and released in 2012. The authors wanted to address the shortcomings in Python and other languages. Also, as they were scientists, they focused on scientific and numerical computation, hitting a niche occupied by MATLAB, which is very good for that application but is not free and not open source. The Julia programming language combines the speed of C with the ease of use of Python to satisfy both scientists and software developers. And it integrates with all of them seamlessly.

In the following sections, we will show you how the Julia Language can be  adapted to every Machine Learning problem . We will cover the core features of the language shown in the context of their usefulness in machine learning and comparison with other languages. A short overview of machine learning tools and frameworks available in Julia is also included. Tools for data preparation, visualization of results, and creating production pipelines also are covered. You will see how easily you can use ML libraries written in other languages like Python, MATLAB, or C/C++ using powerful metaprogramming features of the Julia language. The last part presents how to use Julia in practice, both for rapid prototyping and building cloud-based production pipelines.

The Julia language

Someone said if Python is a premium BMW sedan (petrol only, I guess, eventual hybrid) then Julia is a flagship Tesla. BMW has everything you need, but more and more people are buying Tesla. I can somehow agree with that, and let me explain the core features of the language which makes Julia so special and let her compete for a place in the TIOBE ranking with such great players as LISP, Scala, or Kotlin (31st place in March 2021).

Unusual JIT/AOT complier

Julia uses the LLVM compiler framework behind the scenes to translate very simple and dynamic syntax into machine code. This happens in two main steps. The first step is precompilation, before final code execution, and what may be surprising this it actually runs the code and stores some precompilation effects in the cache. It makes runtime faster but slower building – usually this is an acceptable cost.

The second step occurs in runtime. The compiler generates code just before execution based on runtime types and static code analysis. This is not how traditional just-in-time compilers work e.g., in Java. In “pure” JIT the compiler is not invoked until after a significant number of executions of the code to be compiled. In that context, we can say that Julia works in much the same way as C or C++. That’s why some people call Julia compiler a just-ahead-of-time compiler, and that’s why Julia can run near as fast as C in many cases while remaining a dynamic language like Python. And this is just awesome.

Read-eval-print loop

Read-eval-print loop (REPL) is an interactive command line that can be found in many modern programming languages. But in the case of Julia, the REPL can be used as the real heart of the entire development process. It lets you manage virtual environments, offers a special syntax for the package manager, documentation, and system shell interactions, allows you to test any part of your code, the language, libraries, and many more.

Friendly syntax

The syntax is similar to MATLAB and Python but also takes the best of other languages like LISP. Scientists will appreciate that Unicode characters can be used directly in source code, for example, this equation:  f(X,u,σᵀ∇u,p,t) = -λ * sum(σᵀ∇u.^2)
is a perfectly valid Julia code. You may notice how cool it can be in terms of machine learning. We use these symbols in machine learning related books and articles, why not use them in source code?

Optional typing

We can think of Julia as dynamically typed but using type annotation syntax, we can treat variables as being statically typed, and improve performance in cases where the compiler could not automatically infer the type. This approach is called optional typing and can be found in many programming languages. In Julia however, if used properly, can result in a great boost of performance as this approach fits very well with the way Julia compiler works.

A ‘Glue’ language

Julia can interface directly with external libraries written in C, C++, and Fortran without glue code. Interface with Python code using  PyCall library works so well that you can seamlessly use almost all the benefits of great machine learning Python ecosystem in Julia project as if it were native code! For example, you can write:
 np = pyimport(numpy)
and use numpy in the same way you do with Python using Julia syntax. And you can configure a separate miniconda Python interpreter for each project and set up everything with one command as with Docker or similar tools. There are bindings to other languages as well e.g., Java, MATLAB, or R.

Julia supports metaprogramming

One of Julia's biggest advantages is Lisp-inspired metaprogramming. A very powerful characteristic called homoiconicity explained by a famous sentence: “code is data and data is code” allows Julia programs to generate other Julia programs, and even modify their own code. This approach to metaprogramming gives us so much flexibility, and that’s how developers do magic in Julia.

Functional style

Julia is not an object-oriented language. Something like a  model.fit() function call is possible (Julia is very flexible) but not common in Julia. Instead, we write  fit(model) , and it's not about the syntax, but it is about the organization of all code in our program (modules, multiple dispatches, functions as a first-class citizen, and many more).

Parallelization and distributed computing

Designed with ML in mind, Julia focusses on the scientific computing domain and its needs like parallel, distributed intensive computation tasks. And the syntax is very easy for local or remote parallelism.

Disadvantages

Well, it might be good if the compiler wasn't that slow, but it keeps getting better. Sometimes REPL could be faster, but again it’s getting better, and it depends on the host operating system.

Conclusion

By concluding this section, we would like to demonstrate a  benchmark comparing several popular languages and Julia. All language benchmarks should be treated not too seriously, but they still give an approximate view of the situation.

Julia becomes more and more popular. Since the 2012 launch, Julia has been downloaded over 25,000,000 times as of February 2021, up by 87% in a year.

In the next article, we focus on using Julia in building Machine Learning models. You can also check our  guide to getting started with the language .

Grape Up guides enterprises on their data-driven transformation journey

Ready to ship? Let's talk.

Check our offer
Blog

Check related articles

Read our blog and stay informed about the industry's latest trends and solutions.

Software development
AI

Getting started with the Julia language

Are you looking for a programming language that is fast, easy to start with, and trending? The Julia language meets the requirements. In this article, we show you how to take your first steps.

What is the Julia language?

Julia is an open-source programming language for general purposes. However, it is mainly used for data science, machine learning , or numerical and statistical computing. It is gaining more and more popularity. According to the TIOBE index, the Julia language jumped from position 47 to position 23 in 2020 and is highly expected to head towards the top 20 next year.

Despite the fact Julia is a flexible dynamic language, it is extremely fast. Well-written code is usually as fast as C, even though it is not a low-level language. It means it is much faster than languages like Python or R, which are used for similar purposes. High performance is achieved by using type interference and JIT (just-in-time) compilation with some AOT (ahead-of-time) optimizations. You can directly call functions from other languages such as C, C++, MATLAB, Python, R, FORTRAN… On the other hand, it provides poor support for static compilation, since it is compiled at runtime.

Julia makes it easy to express many object-oriented and functional programming patterns. It uses multiple dispatches, which is helpful, especially when writing a mathematical code. It feels like a scripting language and has good support for interactive use. All those attributes make Julia very easy to get started with and experiment with.

First steps with the Julina language

  1. Download and install Julia from Download Julia .
  2. (Optional - not required to follow the article) Choose your IDE for the Julia language. VS Code is probably the most advanced option available at the moment of writing this paragraph. We encourage you to do your research and choose one according to your preferences. To install VSCode, please follow Installing VS Code and VS Code Julia extension .

Playground

Let’s start with some experimenting in an interactive session. Just run the Julia command in a terminal. You might need to add Julia's binary path to your PATH variable first. This is the fastest way to learn and play around with Julia.

C:\Users\prso\Desktop>julia

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 1.5.3 (2020-11-09)

_/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release

|__/ |



julia> println("hello world")

hello world



julia> 2^10

1024



julia> ans*2

2048



julia> exit()



C:\Users\prso\Desktop>

To get a recently returned value, we can use the ans variable. To close REPL, use exit() function or Ctrl+D shortcut.

Running the scripts

You can create and run your scripts within an IDE. But, of course, there are more ways to do so. Let’s create our first script in any text editor and name it: example.jl.

x = 2

println(10x)

You can run it from REPL:

julia> include("example.jl")

20

Or, directly from your system terminal:

C:\Users\prso\Desktop>julia example.jl

20

Please be aware that REPL preserves the current state and includes statement works like a copy-paste. It means that running included is the equivalent of typing this code directly in REPL. It may affect your subsequent commands.

Basic types

Julia provides a broad range of primitive types along with standard mathematical functions and operators. Here’s the list of all primitive numeric types:

  • Int8, UInt8
  • Int16, UInt16
  • Int32, UInt32
  • Int64, UInt64
  • Int128, UInt128
  • Float16
  • Float32
  • Float64

A digit suffix implies several bits and a U prefix that is unsigned. It means that UInt64 is unsigned and has 64 bits. Besides, it provides full support for complex and rational numbers.

It comes with Bool , Char , and String types along with non-standard string literals such as Regex as well. There is support for non-ASCII characters. Both variable names and values can contain such characters. It can make mathematical expressions very intuitive.

julia> x = 'a'

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)



julia> typeof(ans)

Char



julia> x = 'β'

'β': Unicode U+03B2 (category Ll: Letter, lowercase)



julia> typeof(ans)

Char



julia> x = "tgα * ctgα = 1"

"tgα * ctgα = 1"



julia> typeof(ans)

String



julia> x = r"^[a-zA-z]{8}$"

r"^[a-zA-z]{8}$"



julia> typeof(ans)

Regex

Storage: Arrays, Tuples, and Dictionaries

The most commonly used storage types in the Julia language are: arrays, tuples, dictionaries, or sets. Let’s take a look at each of them.

Arrays

An array is an ordered collection of related elements. A one-dimensional array is used as a vector or list. A two-dimensional array acts as a matrix or table. More dimensional arrays express multi-dimensional matrices.
Let’s create a simple non-empty array:

julia> a = [1, 2, 3]

3-element Array{Int64,1}:

1

2

3



julia> a = ["1", 2, 3.0]

3-element Array{Any,1}:

"1"

2

3.0

Above, we can see that arrays in Julia might store Any objects. However, this is considered an anti-pattern. We should store specific types in arrays for reasons of performance.

Another way to make an array is to use a Range object or comprehensions (a simple way of generating and collecting items by evaluating an expression).

julia> typeof(1:10)

UnitRange{Int64}



julia> collect(1:3)

3-element Array{Int64,1}:

1

2

3



julia> [x for x in 1:10 if x % 2 == 0]

5-element Array{Int64,1}:

2

4

6

8

10

We’ll stop here. However, there are many more ways of creating both one and multi-dimensional arrays in Julia.

There are a lot of built-in functions that operate on arrays. Julia uses a functional style unlike dot-notation in Python. Let’s see how to add or remove elements.

julia> a = [1,2]

2-element Array{Int64,1}:

1

2



julia> push!(a, 3)

3-element Array{Int64,1}:

1

2

3



julia> pushfirst!(a, 0)

4-element Array{Int64,1}:

0

1

2

3



julia> pop!(a)

3



julia> a

3-element Array{Int64,1}:

0

1

2

Tuples

Tuples work the same way as arrays. A tuple is an ordered sequence of elements. However, there is one important difference. Tuples are immutable. Trying to call methods like push!() will result in an error.

julia> t = (1,2,3)

(1, 2, 3)



julia> t[1]

1

Dictionaries

The next commonly used collections in Julia are dictionaries. A dictionary is called Dict for short. It is, as you probably expect, a key-value pair collection.
Here is how to create a simple dictionary:

julia> d = Dict(1 => "a", 2 => "b")

Dict{Int64,String} with 2 entries:

2 => "b"

1 => "a"



julia> d = Dict(x => 2^x for x = 0:5)

Dict{Int64,Int64} with 6 entries:

0 => 1

4 => 16

2 => 4

3 => 8

5 => 32

1 => 2



julia> sort(d)

OrderedCollections.OrderedDict{Int64,Int64} with 6 entries:

0 => 1

1 => 2

2 => 4

3 => 8

4 => 16

5 => 32

We can see, that dictionaries are not sorted. They don’t preserve any particular order. If you need that feature, you can use SortedDict .

julia> import DataStructures



julia> d = DataStructures.SortedDict(x => 2^x for x = 0:5)

DataStructures.SortedDict{Any,Any,Base.Order.ForwardOrdering} with 6 entries:

0 => 1

1 => 2

2 => 4

3 => 8

4 => 16

5 => 32

DataStructures is not an out-of-the-box package. To use it for the first time, we need to download it. We can do it with a Pkg package manager.

julia> import Pkg; Pkg.add("DataStructures")

Sets

Sets are another type of collection in Julia. Just like in many other languages, Set doesn’t preserve the order of elements and doesn’t store duplicated items. The following example creates a Set with a specified type and checks if it contains a given element.

julia> s = Set{String}(["one", "two", "three"])

Set{String} with 3 elements:

"two"

"one"

"three"



julia> in("two", s)

true

This time we specified a type of collection explicitly. You can do the same for all the other collections as well.

Functions

Let’s recall what we learned about quadratic equations at school. Below is an example script that calculates the roots of a given equation: ax2+bx+c .

discriminant(a, b, c) = b^2 - 4a*c



function rootsOfQuadraticEquation(a, b, c)

Δ = discriminant(a, b, c)

if Δ > 0

x1 = (-b - √Δ)/2a

x2 = (-b + √Δ)/2a

return x1, x2

elseif Δ == 0

return -b/2a

else

x1 = (-b - √complex(Δ))/2a

x2 = (-b + √complex(Δ))/2a

return x1, x2

end

end



println("Two roots: ", rootsOfQuadraticEquation(1, -2, -8))

println("One root: ", rootsOfQuadraticEquation(2, -4, 2))

println("No real roots: ", rootsOfQuadraticEquation(1, -4, 5))

There are two functions. The first one is just a one-liner and calculates a discriminant of the equation. The second one computes the roots of the function. It returns either one value or multiple values using tuples.

We don’t need to specify argument types. The compiler checks those types dynamically. Please take note that the same happens when we call sqrt() function using a √ symbol. In that case, when the discriminant is negative, we need to wrap it with a complex()function to be sure that the sqrt() function was called with a complex argument.
Here is the console output of the above script:

C:\Users\prso\Documents\Julia>julia quadraticEquations.jl

Two roots: (-2.0, 4.0)

One root: 1.0

No real roots: (2.0 - 1.0im, 2.0 + 1.0im)

Plotting

Plotting with the Julia language is straightforward. There are several packages for plotting. We use one of them, Plots.jl.
To use it for the first, we need to install it:

julia> using Pkg; Pkg.add("Plots")

After the package was downloaded, let’s jump straight to the example:

julia> f(x) = sin(x)cos(x)

f (generic function with 1 method)



julia> plot(f, -2pi, 2pi)

We’re expecting a graph of a function in a range from -2π to 2π. Here is the output:

Summary and further reading

In this article, we learned how to get started with Julia. We installed all the required components. Then we wrote our first “hello world” and got acquainted with basic Julia elements.

Of course, there is no way to learn a new language from reading one article. Therefore, we encourage you to play around with the Julia language on your own.

To dive deeper, we recommend reading the following sources:

  • Official Getting Started Guide
  • Introducing Julia in Wikibooks
Read more
AI
Software development

Train your computer with the Julia programming language – Machine Learning in Julia

Once we know  the basics of Julia , we focus on its utilization in building machine learning software. We go through the most helpful tools and moving from prototyping to production.

How to do Machine Learning in Julia

Machine Learning tools dedicated to Julia have evolved very fast in the last few years. In fact, quite recently, we can say that  Julia is production-ready! - as it was announced on JuliaCon2020.

Now, let's talk about the native tools available in Julia's ecosystem for Data Scientists. Many libraries and frameworks that serve machine learning models are available in Julia. In this article, we focus on a few the most promising libraries.

 Da  t  aFrames.jl is a response to the great popularity of pandas –  a library for data analysis and manipulation, especially useful for tabular data. DataFrames module plays a central role in the Julia data ecosystem and has tight integrations with a range of different libraries. DataFrames are essentially collections of aligned Julia vectors so they can be easily converted to other types of data like Matrix.  Pand as.jl package provides binding to the pandas' library if someone can’t live without it, but we recommend using a native DataFrames library for tabular data manipulation and visualization.

In Julia, usually, we don’t need to use external libraries as we do with numpy in Python to achieve a satisfying performance of linear algebra operations. Native Arrays and Matrices may perform satisfactorily in many cases. Still, if someone needs more power here there is a great library StaticArrays.jl implementing statically sized arrays in Julia. Potential speedup falls in a range from 1.8x to 112.9x if the array isn’t big (based on tests provided by the authors of the library).

 MLJ.jl created by Alan Turing Institute provides a common interface and meta-algorithms for selecting, tuning, evaluating, composing, and comparing over 150 machine learning models written in Julia and other languages. The library offers an API that lets you manage ML workflows in many aspects. Some parts of the API syntax may seem unfamiliar to the audience but remains clear and easy to use.

 Flux.jl defines models just like mathematical notation. Provides lightweight abstractions on top of Julia's native GPU and TPU - GPU kernels can be written directly in Julia via  CU DA.jl. Flux has its own Model Zoo and great integration with Julia’s ecosystem.

 MXNet.jl is a part of a big Apache MXNet project. MXNet brings flexible and efficient GPU computing and state-of-art deep learning to Julia. The library offers very efficient tensor and matrix computation across multiple CPUs, GPUs, and disturbed server nodes.

 Knet.jl (pronounced "kay-net") is the Koç University deep learning framework. The library supports GPU operations and automates differentiation using dynamic computational graphs for models defined in plain Julia.

 AutoMLPipeline is a package that makes it trivial to create complex ML pipeline structures using simple expressions. AMLP leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and makes it easy to discover optimal structures for machine learning prediction and classification.

There are many more specific libraries like  DecisionTree.jl ,  Transformers.jl, or  YOLO.jl which are often immature but still can be utilized. Obviously, bindings to other popular ML frameworks exists, where many people may find  TensorFlow.jl ,  Torch.jl, or  ScikitLearn.jl as useful. We recommend using Flux or MLJ as the default choice for a new ML project.

Now let’s discuss the situation when Julia is not ready. And here, PyCall.jl comes to the rescue. The Python ecosystem is far greater than Julia’s. Someone could argue here that using such a connector loses all of the speed gained from using Julia and can even be slower than using Python standalone. Well, that’s true. But it’s worth to realize that we ask PyCall for help not so often because the number of native Julia ML libraries is quite good and still growing. And even if we ask, the scope is usually limited to narrow parts of our algorithms.

Sometimes sacrificing a part of application performance can be a better choice than sacrificing too much of our time, especially during prototyping. In a production environment, the better idea may be (but it's not a rule) to call to a C or C++ API of some of the mature ML frameworks (there are many of them) if a Julia equivalent is not available. Here is an example of how easily one can use the famous python scikit-learn library during prototyping:

 @sk_import ensemble: RandomForestClassifier; fit!(RandomForestClassifier(), X, y)

The powerful metaprogramming features (  @sk_import macro via PyCall) take care of everything, exposing clean and functional style API of the selected package. On the other hand, because the Python ecosystem is very easily accessible from Julia (thanks to PyCall), many packages depend on it, and in turn, depend on Python, but that’s another story.

From prototype to Pproduction

In this section, we present a set of basic tools used in a typical ML workflow, such as writing a notebook, drawing a plot, deploying an ML model to a webserver or more sophisticated computing environments. I want to emphasize that we can use the same language and the same basic toolset for every stage of the  machine learning software development process: from prototyping to production at full speed.

For writing notebooks, there are two main libraries available.  IJulia.jl is a Jupyter language kernel and works with a variety of notebook user interfaces. In addition to the classic Jupyter Notebook, IJulia also works with JupyterLab, a Jupyter-based integrated development environment for notebooks and code. This option is more conservative.

For anyone who’s looking for something fresh and better, there is a great project called  Pluto.jl - a reactive, lightweight and simple notebook with beautiful UI. Unlike Jupyter or Matlab, there is no mutable workspace, but an important guarantee: At any instant, the program state is completely described by the code you see. No hidden state, no hidden bugs. Changing one cell instantly shows effects on all other cells thanks to the reactive technologies used. And the most important feature: your notebooks are saved as pure Julia files! You can also export your notebook as HTML and PDF documents.

Visualization and plotting are essential parts of a typical machine learning workflow. We have several options here. For tabular data visualization there we can just simply use the  DataFrame variable in a printable context. In Pluto, it looks really nice (and is interactive):

The primary option for plotting is  Plots.jl , a plotting meta package that brings many different plotting packages under a single API, making it easy to swap between plotting "backends". This is a mature package with a large number of features (including 3D plots). The downside is that it uses Python behind the scenes (but that’s not a severe issue here) and can cause problems with configuration.

 Gadfly.jl is based largely on ggplot2 for R and renders high-quality graphics to SVG, PNG, Postscript, and PDF. The interface is simple and cooperates well with DataFrames.

There is an interesting package called  StatsPlots.jl which is a replacement for  Plots.jl that contains many statistical recipes for concepts and types introduced in the JuliaStats organization, including correlation plot, Andrew's plot, MDS plot, and many more.

To expose the ML model as a service, we can establish a custom model server. To do so, we can use  Genie.jl - a full-stack MVC web framework that provides a streamlined and efficient workflow for developing modern web applications and much more. Genie manages all of the virtual environments, database connectivity, or automatic deployment into docker containers (you just run one function, and everything works). It’s pure Julia and that’s important here because this framework manages the entire project for you. And it’s really very easy to use.

Apache Spark is a distributed data and computation engine that becomes more and more popular, especially among large companies and corporations. Hosted Spark instances offered by cloud service providers make it easy to get started and to run large, on-demand clusters for dynamic workloads.

While Scala, as the primary language of Spark, is not the best choice for some numerical computing tasks, being built for numerical computing, Julia is however perfectly suited to create fast and accurate numerical applications.  Spark.jl is a library for that purpose. It allows you to connect to a Spark cluster from the Julia REPL and load data and submit jobs. It uses  JavaCall.jl behind the scenes. This package is still in the initial development phase. Someone said that Julia is a bridge between Python and Spark - being simple like Python but having the big-data manipulation capabilities of Spark.

In Julia, we can do distributed computing effortlessly. We can do it with a useful  JuliaDB.jl package, but straight Julia with distributed processes work well. We use it in production, distributed across multiple servers at scale. Implementation of distributed parallel computing is provided by module Distributed as part of the standard library shipped with Julia.

Machine Learning in Julia - conclusions

We covered a lot of topics, but in fact, we only scratched the surface. Presented examples show that, under certain conditions, Julia can be considered as a serious option for  your next machine learning project in an enterprise environment or scientific work. Some Rustaceans (Rust language users call themselves that) ask themselves in terms of machine learning capabilities in their loved language: Are we learning yet? Julia's users can certainly answer yes! Are we production ready? Yes, but it doesn't mean Julia is the best option for your machine learning projects. More often, the mature Python ecosystem will be the better choice. Is Julia the future of machine learning? We believe so, and we’re looking forward to see some interesting apps written with Julia.

Read more
View all
Connect

Interested in our services?

Reach out for tailored solutions and expert guidance.

Stay updated with our newsletter

Subscribe for fresh insights and industry analysis.

About UsCase studiesContactCareers
Capabilities:
Legacy ModernizationData PlatformsArtificial Intelligence
Industries:
AutomotiveFinanceManufacturing
Solutions:
DataboostrCloudboostr
Resources
BlogInsights
© Grape Up 2025
Cookies PolicyPrivacy PolicyTerms of use
Grape Up uses cookies

This website uses cookies to improve its user experience and provide personalized content for you. We use cookies for web analytics and advertising. You can accept these cookies by clicking "OK" or go to Details in order to manage your cookies preferences more precisely. To learn more, check out our Privacy and Cookies Policy

Accept allDetails
Grape Up uses cookies

Essential website cookies are necessary to provide you with services available through the website, autosave your settings and preferences, and to enhance the performance and security of the website - you have the right not to accept them through your web browser's settings, but your access to some functionality and areas of our website may be restricted.

Analytics cookies: (our own and third-party : Google, HotJar) – you can accept these cookies below:

Marketing cookies (third-party cookies: Hubspot, Facebook, LinkedIn) – you can accept these cookies below:

Ok