About us
Our services

Capabilities

Legacy Modernization
Data Platforms
AI & Advanced Analytics

Industries

Automotive
Finance
Manufacturing
Aviation

Solutions

Databoostr

Data Sharing & Monetization Platform

Cloudboostr

Multicloud Enterprise Kubernetes

Looking for something else?

Contact us for tailored solutions and expert guidance.

Contact
Case studies
Resources

Resources

Blog

Read our blog and stay informed about the industry’s latest trends and technology.

Ready to find your breaking point?

Stay updated with our newsletter.

Subscribe

Insights

Ebooks

Explore our resources and learn about building modern software solutions from experts and practitioners.

Read more
Careers
Contact
Blog
Automotive

What's new in the truck industry

Adam Kozłowski
Head of Automotive R&D
Marcin Wiśniewski
Head of Automotive Business Development
June 2, 2022
•
5 min read

Table of contents

Heading 2
Heading 3
Heading 4
Heading 5
Heading 6

Schedule a consultation with automotive software experts

Contact us

 64% of truck industry CEOs say the future success of their organization hinges upon the digital revolution. This should come as no surprise, as transportation as we knew it a decade or two ago is slowly fading into obscurity.

Operating standards in the industry are improving, and values such as speed, efficiency, eco-friendliness, and safety are reverberating in announcements at industry conferences and in truck industry reports.

Self-driving, fully autonomous vehicles, mainly electrically powered and  based on AI and the Internet of things , are transforming 21st-century transportation. It is well worth taking a look at examples of solutions implemented by innovators with substantial development capital.

Solutions that translate into safety and driving performance of larger vehicles

Some innovations, in particular, are shifting the industry forward. And they are literally doing so. Developments like autonomous vehicles, electric-powered trucks,  Big Data , and  cloud computing have modified the way goods and people are transported. Smart analytics allows for more efficient supply chains, but not only that.  It also enhances driving safety and the experience of traveling long distances.

High-tech trucks break down less frequently and cause fewer accidents. And self-driving technologies, which are still being developed, enable you to save time and money.

AI, Big Data, Internet of things

Better location tracking, improved ambient sensing, and  enhanced fleet management . All these benefits can be achieved by implementing IoT solutions.

Composed of devices and detectors in the vehicle and in the road infrastructure,  the network is a space for the continuous exchange of data in real-time . It provides information about the conditions on the route, but also whether the cargo is stable (tilt at the level of the pallet or package), and whether the pressure in the tires is at the right level. This facilitates the work of drivers, shippers, and management.

This solution is applied, for instance, at one of the globally leading logistics companies,  Kuehne + Nagel. The company uses IoT sensors and a cloud-based platform in its daily work. It simply works.

The use of artificial intelligence algorithms is equally important.     Advanced Big Data analytics    , coupled with AI, allows companies to make decisions based on accurate, quality data. According to Supply Chain Management World research, 64 percent of executives believe that big data and coupled technologies will empower and change the industry forever. This is because it will improve performance forecasting and goal formulation even further.

Performance indicators are measured in this way by the logistics company  Geodis. With their proprietary Neptune platform, they leverage real-time coordination of transportation activities. With one app and a few clicks, carriers and customers can manage all activities during transport.

Failure prevention

Software-based solutions in the trucking industry are eradicating a number of issues that have previously been the bane of the industry. These include breakdowns, which sometimes take a fleet's operationally significant "arsenal" out of circulation. You can find out about such incidents even before they happen.

 Drivers of the new Mercedes-Benz eActros, for example, have recently been able to make use of the intelligent Mercedes-Benz Uptime system. This service is based on more than 100 specific rules that continuously monitor processes such as charging. On top of that, they control the voltage history associated with the high-voltage battery.

All information required in terms of reliability is available to customers via a special portal in the cloud. In this way, the German manufacturer wants to keep unexpected faults to a minimum and facilitate the planning of maintenance work for the fleet.

Self-driving vehicles

Automated trucks equipped with short and long-distance radars, sensors, cameras, 3D mapping, and laser detection are poised to revolutionize the industry. They are also a solution to the problem of the driver shortage, though, as a matter of fact, we still have to wait a while for fully autonomous trucks.

However, there are many indications that there will be increased investment in such solutions. Just take a look at the proposals from tech giants in the US like  Tesla, Uber, Cruise, and Waymo.

The latter offers the original Waymo VIA solution, promising van and bus drivers an unparalleled autonomous driving experience. Waymo Driver's intelligent driving assistant, based on simulations with the most challenging driving scenarios, is capable of making accurate decisions already in the natural road environment. WD sees and detects what's happening on the road, in addition to being able to handle complex tasks of accelerating, braking, and navigating a wide turning circle.

Sustainable drive

The sustainability trend is now powering multiple industries, with the truck industry being no exception. So it should come as no surprise that a rising number of large transport vehicles are being electrified.

Tesla is investing in electric trucks, and doubly so, because in addition to making their  Semi Truck an electric vehicle, Elon Musk's brand has additionally created its own charging infrastructure - a network of superchargers under the brand, the Tesla Supercharger Network.  As a result, ST trucks are able to drive 800 km on full batteries, and an additional 600 km of range can be attained after 30 minutes of charging.

Another giant,  Volkswagen , is also following a similar approach. It is investing in electric trucks with solid-state batteries that, unlike lithium-ion batteries, provide greater safety and an improved quick-charging capability. In the long run, this is intended to lead to an increase of up to 250% in the range of kilometers covered.

The mission to reduce CO2 emissions in truck transport is also being actively promoted by  VOLTA. Their all-electric trucks are designed to reduce exhaust tailpipe emissions to 1,191,000 tonnes by 2025. A slightly smaller, but still impressive goal has been set by England's  Tevva Electric Trucks. Their vehicles are expected to reduce CO2 emissions by 10 million tons by the next decade.

Giants already know what's at stake

Companies like Tesla, Nikola Corporation, Einride, Daimler, and Volkswagen already understand the need to enter the electric vehicle market with bold proposals. Major players in the automotive market are also targeting synergistic collaborations. For instance, BMW, Daimler, Ford, and Volkswagen are teaming up to build a high-powered European charging network. Each charging point will be 350 kW and use the Combined Charging System (CCS) standard to work with most electric vehicles, including trucks.

Another major collaboration involves Volkswagen Group Research and the American company QuantumScape. The latter is conducting research on solid-state lithium metal batteries for large electric cars. This partnership is expected to enable the production of solid-state batteries on an industrial level.

Smooth energy management

Truck electrification is not all that is needed. It is also essential that electric vehicles have an adequate range and unhindered access to charging infrastructure. In addition, optimizing consumption and increasing energy efficiency is also one of the challenges.

It is with these needs in mind that Proterra has developed special  Proterra APEX  connected vehicle intelligence telematics software to assist electric fleets with real-time energy management. Electric batteries are constantly monitored and real-time alerts appear on dashboards. Fleet managers also have access to configurable reports.

Meanwhile, the Fleetboard Charge Management developed by  Mercedes offers a comprehensive view of all interactions between e-trucks and the company's charging stations. Users can see what the charging time is and monitor the current battery status. Beyond that, they can view the history of previous events. They can also adjust individual settings such as departure times and final expected battery status.

Truck Platooning

More technologically advanced trucks can be linked together.  Platooning, or interconnected lines of vehicles traveling in a single formation allows for substantial savings. Instead of multiple trucks "scattered" on the road, the idea is to have a single, predictable in many ways string of vehicles moving in a highly efficient and low-emission manner.

How is this possible? The answer is simple: telematics.  Telecommunication devices enable the seamless sending, receiving, and storing of information. Josh Switkes, a founder of Peloton, a leader in automated vehicles, explains how the system functions: We’re sending information directly from the front truck to the rear truck, information like engine torque, vehicle speed, and  brake application .

Although platooning is not yet widespread, it may soon become a permanent fixture on European roads thanks to  Ensemble . As part of this project, specialists, working with brands such as  DAF, DAIMLER, MAN, IVECO, SCANIA, and VOLVO Group, are analyzing the impact of platooning on infrastructure, road safety, and traffic flow. However, the fuel savings alone are already said to be 4.5% for the leading truck and 10% for the truck following it.

Smart sensors

Developers of automotive and truck industry technologies are focusing particularly on safety issues. These can be aided by intelligent sensors that allow a self-driving vehicle to generate alerts and take proactive action. This is how VADA works. This is  Volvo ’s active driver assistance system, already being standard on the Volvo VNR and VNL models.

The advanced collision warning system, which combines radar sensors with a camera, alerts the driver seconds before an imminent collision. If you are too slow to react, the system can implement emergency braking automatically in order to avoid a crash.

Innovative design

Changes are also taking place at the design stage of large vehicles. This is particularly emphasized by the makers of these cutting-edge models. One of the leaders in this field is  VOLTA , which advertises its ability to create "the world's safest commercial vehicles".

Their Volta Zero model provides easy and low level boarding and alighting from either side directly on the sidewalk. That's possible because the vehicle doesn't have an internal combustion engine, so the engineers were able to overhaul previously established rules.

Dynamic route mapping and smart monitoring

While GPS is nothing new, the latest software uses the technology to a more advanced degree. For instance, for so-called dynamic route mapping, i.e. selecting the shortest, most convenient route, allowing for possible congestion. Importantly, this works flexibly, adapting not only to road conditions but also, for example, to unexpected increases in loading, etc.

Volta Zero also relies on the advanced route and vehicle monitoring. Using the Sibros OTA Deep Logger, you can receive up-to-date information on individual vehicles and the entire fleet.

Shipping is not like it used to be

Apart from the passenger car market changes, a similar revolution is underway in the truck and van industry. This transformation is called for as the problem is not only a shortage of professional drivers but also reducing the cost of transportation and increasing volume. So any loss-reduction initiative is of paramount value.

As for the solutions we have mentioned in this article, they will certainly not all be widely implemented in the next few years. For example, it is difficult to expect only electric-powered autonomous trucks to be on the road as early as 2027. What can be widely rolled out now is, for example, optimization of cargo loading (by predicting when the truck will arrive), better route finding (via advanced GPS), or predictive maintenance (early repair before it generates logistics costs). It is only the second step to progress toward full electrification and autonomization.

Regardless of how the truck industry evolves over the next few or so years, it is definite that the changes will be based on the idea of a digital revolution, advanced software, and smart components.

All this is geared to enhance mobility services, bringing aspects such as driving comfort, business efficiency, and safety to a new level. This is a fact well known to the big OEM players and to the  tech and automotive companies that year after year are competing with each other in innovations.

Data powertrain in automotive: Complete end-to-end solution

We power your entire data journey, from signals to solutions

Check our offer
Blog

Check related articles

Read our blog and stay informed about the industry's latest trends and solutions.

Automotive
Data platforms

How predictive maintenance changes the automotive industry

 Ever since Henry Ford implemented the first production line and launched mass production of the Ford Model T, the automotive industry has been on the constant lookout for ways to boost performance. This aspect has become even more relevant today, given the constant market and social unrest. Coming to rescue supply chain management and product lifecycle optimization is predictive maintenance. Not only OEMs, but the entire automotive industry: insurers, car rental companies and vehicle owners are benefiting from the implementation of this technology.

Predictive maintenance explained

Predictive maintenance is an advanced maintenance approach that utilizes data science and predictive analytics to anticipate when equipment or machinery requires maintenance before it faces a breakdown.

The primary aim is to schedule maintenance at optimal times, considering convenience and cost-effectiveness while maximizing the equipment's longevity. By identifying potential issues before they become critical, predictive maintenance significantly reduces the likelihood of equipment breakdowns.

Various types of maintenance strategies are employed in different industries:

  1.     Reactive Maintenance:    Also known as "run-to-failure," this method involves waiting for equipment to fail before conducting maintenance. Therefore, unscheduled downtime and higher repair costs may occur.
  2.     Periodic Maintenance    : This approach entails performing maintenance tasks at regular intervals, regardless of the equipment's condition. It helps prevent unexpected breakdowns but may lead to unnecessary maintenance if done too frequently.
  3.     Smart Maintenance    : Smart maintenance utilizes advanced technologies like IoT devices and sensors to monitor equipment in real-time and identify anomalies or potential failures.
  4.     Condition-Based Maintenance    : This strategy relies on monitoring the equipment's condition while it is in operation. Maintenance is only carried out when data indicates a decline in performance or a deviation from normal parameters, optimizing maintenance schedules and reducing unnecessary work.
  5.     Predictive Maintenance    : The most advanced type of maintenance uses real-time operational data and predictive analytics to forecast when maintenance is required. It aims to schedule maintenance before equipment failure occurs based on data-driven predictions, thus minimizing downtime, reducing costs, and prolonging equipment lifespan.

Predictive maintenance employs various techniques, such as vibration analysis, acoustic monitoring, infrared technology, oil analysis, and motor circuit analysis. These methods enable continuous equipment condition monitoring and early detection of potential failures, facilitating timely maintenance interventions.

Differentiation between predictive maintenance and preventive maintenance

 Predictive maintenance hinges on the real-time condition of assets and is implemented only when the need arises. Its purpose is to anticipate potential failures by monitoring assets while they are actively operational. Unlike  preventive maintenance , this approach is rooted in the current operational state of an asset rather than statistical analysis and predetermined schedules.

Essential steps in creating a predictive maintenance solution

Predictive maintenance solutions utilize a combination of sensors, artificial intelligence, and data science to optimize equipment maintenance.

The development of such solutions varies depending on equipment, environment, process, and organization, leading to diverse perspectives and technologies guiding their creation. However, there are steps common to every project: data collection and analysis, model development and deployment, as well as continuous improvement.

Here is a step-by-step process of how solutions are developed in the  automotive industry :

  •     Data Collection    : Relevant data is collected from sensors, equipment logs, vehicle diagnostics, telemetry, and other sources. This data includes information about the performance, condition, and behavior of the vehicles, such as engine temperature, fuel consumption, mileage, and more. Telematics systems can provide real-time data on vehicle location, speed, and usage patterns, while maintenance logs record historical maintenance activities, repairs, and part replacements.
  •     Data Preprocessing    : The collected data is organized, and prepared for analysis. Data preprocessing involves cleaning the data by removing outliers or erroneous values, handling missing values through imputation or interpolation, and converting the data into a suitable format for analysis.
  •     Feature Engineering    : Important features or variables that can provide insights into the health and performance of the vehicles are selected from the collected data. These features can include engine vibration, temperature, fuel consumption, mileage, and more. Feature selection step involves identifying the most relevant features that have a strong correlation with the target variable (e.g., equipment failure). It helps to reduce the dimensionality of the data and improve the model's efficiency and interpretability. Later, selected features are transformed to make them more suitable for modelling. The process may include techniques such as logarithmic or exponential transformations, scaling, or encoding categorical variables.
  •     Model Development    : Machine learning algorithms are applied to the selected features to develop predictive models. These models learn from historical data and identify patterns and relationships between various factors and equipment failures. The algorithms used can include regression, decision trees, random forests, neural networks, and more.
  •     Model Training and Validation    : The developed models are trained using historical data and validated to ensure their accuracy and performance. This involves splitting the data into training and testing sets, evaluating the model's performance metrics, and fine-tuning the model if necessary.
  •     Deployment and Monitoring    : The trained models are deployed into the predictive maintenance system, which continuously monitors real-time data from sensors and other sources. Telematics systems are used to collect GPS and vehicle-specific data, which it transmits through different methods (cellular network, satellite communication, 4G mobile data, GPRS) to the central server. The system detects anomalies, recognizes patterns, and provides insights into the health of the vehicles. It can alert maintenance teams when potential issues are detected.
  •     Continuous Improvement    : The predictive maintenance solution is continuously improved by collecting feedback, monitoring its performance, and updating the models and algorithms as new data becomes available.

Most common problems in deploying predictive maintenance solutions

Implementing predictive maintenance solutions in a fleet of vehicles or in a vehicle factory is a process that requires time, consistency and prior testing. Among the main challenges of rolling out this technology, the following aspects in particular are noteworthy.


Data integration

Integrating data from many sources is a significant barrier to implementing predictive maintenance solutions. To accomplish this with a minimum delay and maximum security, it is necessary to streamline the transfer of data from machines to ERP systems. To collect, store, and analyze data from many sources, businesses must have the proper infrastructure in place.

Insufficient data

Lack of data is a major hindrance to implementing predictive maintenance systems. Large amounts of information are needed to develop reliable models for predictive maintenance. Inadequate information might result in inaccurate models, which in turn can cause costly consequences like premature equipment breakdowns or maintenance.

To get over this difficulty, businesses should collect plenty of data for use in developing reliable models. They should also check that the data is relevant to the monitored machinery and of high quality. Businesses can utilize digital twins, or digital representations of physical assets, to mimic the operation of machinery and collect data for use in predictive maintenance systems.

Process complexity

Transitioning from preventive to predictive maintenance is complex and time-intensive. It requires comprehensive steps beyond technology, including assembling a skilled team and managing upfront costs. Without qualified experts versed in software and process intricacies, project success is doubtful.

High costs

The implementation of predictive maintenance programs comes with substantial costs. These upfront expenses pose challenges, including the need to invest in specialized sensors for data collection, procure effective data analysis tools capable of managing complexity, and possibly hire or train personnel with technical expertise.

To address these hurdles, collaboration with specialized vendors and the utilization of cloud-based solutions can prove cost-effective. Additionally, digital twin technology offers a way to simulate equipment behavior and minimize reliance on physical sensors, potentially reducing overall expenses.

Privacy and security issues

The implementation of predictive maintenance involves extensive data collection and analysis, which can give rise to privacy concerns. Companies must adhere to applicable data protection laws and regulations, and establish proper protocols to safeguard the privacy of both customers and employees. Even though predictive maintenance data may be anonymized and not directly linked to specific individuals, it still necessitates robust security measures, since preventing data breaches and unauthorized access to vital company information is crucial for overall success.

What Are the Benefits of Predictive Maintenance?

Life cycle optimization, stock management, or even recycling management - in each of these fields predictive maintenance can bring substantial benefits. And this is not only for OEMs but also for fleet operators, transportation or logistics companies. And even for the end user.

Below we list the key benefits of implementing  predictive maintenance in an automotive-related company:

  •     Extended lifespan:    Predictive maintenance technology detects early signs of wear and potential malfunctions in-vehicle components such as engines, transmissions, and brakes. By addressing these issues proactively, vehicles experience fewer major breakdowns and continue to operate efficiently over a longer period.
  •     Cost savings:    By addressing issues at an early stage, automotive companies can avoid expensive breakdowns and prevent further damage. This proactive approach not only reduces the need for costly replacement parts but also minimizes the labor and operational costs associated with major repairs, resulting in significant long-term cost savings.
  •     Minimized downtime    : Through continuous monitoring and analysis, predictive maintenance predicts when maintenance or repairs are needed and schedules them during planned downtime. This minimizes the likelihood of unexpected breakdowns that can disrupt operations and lead to extended periods of vehicle inactivity. By strategically timing maintenance activities, vehicles spend more time on the road.
  •     Increased efficiency    : Any iissues are detected early, enabling timely corrective actions. This proactive approach leads to improved fuel economy, reduced emissions, and overall enhanced efficiency. Vehicles operate at their peak performance, contributing to a more sustainable and environmentally friendly fleet.
  •     Enhanced security:    Constant monitoring for abnormal vibrations, temperature variations, and fluid leaks ensures that potential issues compromising vehicle safety and security are detected promptly. By addressing these concerns before they escalate, predictive maintenance contributes to ensuring the security of both the vehicle and its occupants. This feature is particularly valuable in critical applications where reliable vehicle performance is paramount, such as emergency response scenarios.
  •     Avoiding over-maintenance    : If you over-maintain corporate resources, it can have the same negative consequences as when failing to maintain them on time. With predictive maintenance, you can focus on maintaining crucial resources at the best possible time and with the best possible results.
  •     Compliance with required standards and regulations    : Laws and regulations related to vehicle production are constantly evolving and pushing OEMs to make numerous production changes (e.g. the legislation related to EV production). Predictive maintenance allows you to better suit the new expectations of legislators and monitor the points of production that are most dependent on the legal context.  
  •     Easier management of parts and materials    : As connected cars diagnostic systems become more sophisticated, drivers have the option to make small repairs sooner and keep their vehicles in a better condition. All this means that OEMs and licensed repair shops need fewer parts and can better manage supply chains.

 Predictive maintenance clearly is not a one-size-fits-all solution for all sectors. Notably, it will work well for high production volumes and short lead times and anywhere you need to ensure reliability, security and convenience.

The automotive industry is a perfect fit for this model. As shown in the examples featured in the second part of the article, the top players in the market are tapping into this technology.

According to  Techsci Research , “  The global predictive maintenance market was valued at USD 4.270 billion in 2020 and is projected to grow around USD 22.429 billion by 2026”.

Read more
AI
Automotive
Software development

Generative AI in automotive: How industry leaders drive transformation

Generative AI is quickly emerging as one of the key drivers of automotive innovation. This shift is not just a future possibility; it's already happening. In 2023, the generative AI market in the automotive sector was valued at approximately  USD 387.54 million . Looking ahead, it's projected to surge to about  USD 2,691.92 million by 2032 , demonstrating a robust Compound Annual Growth Rate (CAGR) of 24.03% from 2023 to 2032. Major Original Equipment Manufacturers (OEMs) are integrating sophisticated AI algorithms into various aspects of the industry, from vehicle design to enhancing customer interactions.

The impact of generative AI in the automotive sector is already evident. For instance, NVIDIA's generative AI models empower designers to swiftly  transform 2D sketches into intricate 3D models, significantly speeding up the design process and opening up new avenues for creativity and efficiency​​. Meanwhile, automotive manufacturing companies are exploring collaborations with tech giants to integrate advanced AI language models into their vehicles, enhancing the driving experience​​.

 

This article will explore how leading automotive players are leveraging generative AI to not only keep pace with the evolving demands of the market but also redefine mobility and automotive excellence.

Software-defined vehicles and generative AI

The introduction of software-defined vehicles (SDVs) represents a significant shift in the automotive industry, moving beyond traditional performance metrics such as horsepower and chassis design to focus on software and digital capabilities. By 2025, it is estimated that vehicles could require as much as  650 million lines of code each. These vehicles heavily rely on software for critical operations such as driving assistance, navigation, and in-car entertainment systems.

The integration of generative AI in this domain further amplifies these capabilities. Generative AI is known for its ability to create and optimize designs and solutions, which is beneficial in improving both the software and hardware aspects of SDVs. It helps in generating efficient algorithms for vehicle control systems, contributes to the development of more effective and adaptive software solutions, and even assists in designing vehicle components for better performance and efficiency.

However, bringing generative AI into this landscape presents both unique opportunities and significant challenges.

The opportunities and challenges

  •     Challenges  

Integrating advanced AI systems into modern vehicles is a complex and multifaceted task that demands  technical expertise and careful attention to data security and privacy , particularly with the increasing reliance on data-driven functionalities in vehicles.

The automotive industry is facing a complex regulatory environment. With the growing importance of AI and data in-vehicle systems, it has become crucial to  comply with various international regulations and standards , covering areas such as data protection, safety, and environmental impact.

One significant challenge for OEMs is the  lack of standardization within the software-defined vehicles industry, which can complicate the development and integration of new technologies as there are no universal norms or protocols to guide these processes.

 Internal transformation is also a critical aspect of this integration. OEMs may need to revamp their internal capabilities, processes, and technological infrastructure to use generative AI effectively.

  •     Opportunities  

Integrating generative AI technology allows for more  creative and efficient vehicle design , resulting in  quicker prototypes and more innovative models .

It also allows for creating  personalized vehicles that cater to individual user preferences like never before. In manufacturing, generative AI promotes more efficient and  streamlined production processes , which optimizes resources and reduces waste.

Let's explore how automotive manufacturers already use gen AI to boost their operations.

Generative AI applications in the automotive industry

Generative AI's integration into the automotive industry revolutionizes multiple facets of vehicle design, manufacturing, and user experience. Let's explore these areas:

Design and conceptualization

  •     Vehicle Design Enhancement    : Artificial Intelligence is revolutionizing the vehicle design process by speeding up the initial phase of the design cycle. Generative design algorithms use parameters such as material properties, cost constraints, and performance requirements to generate optimal design solutions. For example, in vehicle body design, AI can propose multiple design options that optimize for aerodynamics and strength while minimizing weight. This enables quick visualization and modification of ideas.

 Toyota Research Institute has introduced a generative AI technique to optimize the vehicle design process to produce more efficient and innovative vehicles. This approach allows designers to explore a wider range of design possibilities, including aerodynamic shapes and new material compositions.

  •     Digital Prototyping    : The use of Generative AI technology makes it possible to create digital prototypes, which can be tested and refined extensively without the need for physical models. This approach is highly beneficial, as it enables designers to detect and correct potential design flaws early in the process.

 BMW's use of NVIDIA Omniverse is a significant step in design improvement. The company uses this platform to create digital twins of their manufacturing facilities, integrating generative AI to enhance production efficiency and design processes.

Manufacturing and production

  •     Streamlining Manufacturing Processes    : Generative AI significantly enhances the efficiency of manufacturing processes. Unlike traditional AI or machine learning models, generative AI goes beyond identifying inefficiencies; it actively generates novel manufacturing strategies and solutions. By inputting parameters such as production timelines, material constraints, and cost factors, generative AI algorithms can propose a range of optimized manufacturing workflows and processes.

 BMW has implemented generative AI in a unique way to improve the scheduling of their manufacturing plant. In partnership with Zapata AI, BMW utilized a quantum-inspired generative model to optimize their plant scheduling, resulting in more efficient production. This process, known as Generator-Enhanced Optimization (GEO), has significantly improved BMW's production planning, demonstrating the potential of generative AI in industrial applications.

  •     Supply Chain Resilience    : In the context of supply chain management, particularly during challenges like the automotive microchip shortage, generative AI plays a crucial role. Unlike conventional AI, gen AI can do more than just analyze existing supply chain networks; it can creatively generate alternative supply chain models and strategies. The algorithms can propose diverse and robust supplier networks by leveraging data about supplier capabilities, logistics constraints, and market demands.
  •     Customized Production    : With generative AI, it is now possible to create personalized vehicles on a large scale, meeting the growing demand for customization in the automotive industry.

Predictive maintenance and modelling

Traditionally, predictive maintenance relies on historical data to forecast equipment failures, but generative AI enhances this process by creating detailed, simulated data environments. This technology generates realistic yet hypothetical scenarios, encompassing a vast array of potential machine failures or system inefficiencies that might not be present in existing data sets.

The generative aspect of this AI technology is particularly valuable in situations where real-world failure data is limited or non-existent. By synthesizing new data points, generative AI models can extrapolate from known conditions to predict how machinery will behave under various untested scenarios.

In modeling, generative AI goes a step further. It not only predicts when and how equipment might fail but also suggests optimal maintenance schedules, anticipates the impact of different environmental conditions, and proposes design improvements.

Customer experience and marketing

One of the challenges in using generative AI, particularly in customer interaction, is the accuracy of AI-generated responses. An example of this was an error by ChatGPT, where it was tricked into suggestion of  buying a Chevy for a dollar . This incident underlines the potential risks of misinformation in AI-driven communication, emphasizing the need for regular updates, accuracy checks, and human oversight in AI systems. Nevertheless, this technology offers many opportunities for improving the customer experience:

  •     Personalized User Experiences and Enhanced Interaction    : AI's capability to adapt to individual preferences not only enhances the driving experience but also improves the functionality of vehicle features.

For instance, in collaboration with Microsoft,  General Motors is exploring the use of AI-powered virtual assistants that offer drivers a more interactive and informative experience. These assistants can potentially provide detailed insights into vehicle features and performance metrics and offer personalized recommendations based on driving patterns.

Also,  Mercedes-Benz is exploring the integration of generative AI through voice-activated functionalities in collaboration with Microsoft. This includes leveraging the OpenAI Service plugin ecosystem, which could allow for a range of in-car services like restaurant reservations and movie ticket bookings through natural speech commands.

Example applications

  •     Simplified Manuals    : AI technology, enabled by natural language processing, has simplified the interaction between drivers and their vehicles. Beyond just responding to voice commands with pre-existing information, a generative AI system can even create personalized guides or tutorials based on the driver's specific queries and past interactions.
    Grape Up has developed an innovative          voice-driven car manual         that allows drivers to interact with their vehicle manual through voice commands, making it more accessible and user-friendly. With this technology, drivers no longer have to navigate through a traditional manual. Still, they can easily ask questions and receive instant verbal responses, streamlining the process of finding information about their vehicle.  
  •     Roadside Assistance:    In this scenario, generative AI can go beyond analyzing situations and suggesting solutions by creating new, context-specific guidance for unique problems. For instance, if a driver is stranded in a rare or complex situation, the AI could generate a step-by-step solution, drawing from a vast database of mechanical knowledge, previous incidents, and environmental factors.
  •     Map Generation    : Here, generative AI can be used to not only update maps with real-time data but also to predict and visualize future road conditions or propose optimal routes that don't yet exist. For example, it could generate a route that balances time, fuel efficiency, and scenic value based on the driver's preferences and driving history.
  •     Marketing and Sales Innovation    : Generative AI-enabled content engine is transforming the creation of digital advertising for the automotive industry. This content is tailored to meet the unique requirements of automotive brands and their consumers, thereby revolutionizing traditional marketing strategies.

Safety and compliance

  •     Enhancing Vehicle Safety    : Generative AI in vehicles goes beyond traditional AI systems by not only assisting drivers but also by creating predictive models that enhance safety features. It processes and interprets data from cameras and sensors to foresee potential road hazards, often employing advanced generative models that simulate and predict various driving scenarios.
  •     Regulatory Compliance    : Similarly, gen AI helps automakers comply with safety standards and navigate complex regulation changes by monitoring performance data and comparing it against regulatory benchmarks. This allows automakers to stay ahead of the compliance curve and avoid potential legal and financial repercussions.

Autonomous vehicle development

  •     Simulation and Testing    : Generative AI is crucial for developing autonomous vehicle systems. It generates realistic simulations, including edge-case scenarios, to test and improve vehicle safety and performance.
  •     Enhancing ADAS Capabilities    : AI technology can improve essential Advanced Driver Assistance Systems (ADAS) features such as adaptive cruise control, lane departure warnings, and automatic emergency braking by analyzing data from various sensors and cameras. Generative AI's strength in this context lies in its ability to not only process existing data but also to generate new data models, which can predict and simulate different driving scenarios. This leads to more advanced, reliable, and safer ADAS functionalities, significantly contributing to the evolution of autonomous and semi-autonomous driving technologies.

Conclusion

As the automotive industry accelerates towards a more AI-integrated future, the role of expert partners like Grape Up becomes increasingly crucial. Our expertise in navigating the intricacies of AI implementation can help automotive companies unlock the full potential of this technology. If you want to stay ahead in this dynamic landscape, now is the time to embrace the power of generative AI. For more information or to collaborate with Grape Up,  contact our experts today.

Read more
Automotive
Software development

Predictive maintenance in automotive manufacturing

Our  initial article on predictive maintenance covered the definition of such a system, its construction, and the key implementation challenges. In this part, we'll delve into how PdM technology is transforming different facets of the automotive industry and its advantages for OEMs, insurers, car rental companies, and vehicle owners.

Best predictive maintenance techniques and where you can use them

In the first part of the article, we discussed the importance of sensors in a PdM system. These sensors are responsible for collecting data from machines and vehicles, and they can measure various variables like temperature, vibration, pressure, or noise. Proper placement of these sensors on the machines and connecting them to IoT solutions, enables the transfer of data to the central repository of the system. After processing the data, we obtain information about specific machines or their parts that are prone to damage or downtime.

The automotive industry can benefit greatly from implementing these top predictive maintenance techniques.

Vibration analysis

 How does it work?

Machinery used in the automotive industry and car components have a specific frequency of vibration. Deviations from this standard pattern can indicate "fatigue" of the material or interference from a third-party component that may affect the machine's operation. The PdM system enables you to detect these anomalies and alert the machine user before a failure occurs.

 What can be detected?

The technique is mainly applied to high-speed rotating equipment. Vibration and oscillation analysis can detect issues such as bent shafts, loose mechanical components, engine problems, misalignment, and worn bearings or shafts.

Infrared thermography analysis

 How does it work?

The technique involves using infrared cameras to detect thermal anomalies. This technology can identify malfunctioning electrical circuits, sensors or components that are emitting excessive heat due to overheating or operating at increased speeds. With this advanced technology, it's possible to anticipate and prevent such faults, and even create heat maps that can be used in predictive models and maintenance of heating systems.

 What can be detected?

Infrared analysis is a versatile and non-invasive method that can be used on a wide scale. It is suitable for individual components, parts, and entire industrial facilities, and can detect rust, delamination, wear, or heat loss on various types of equipment.

Acoustic analysis monitoring

 How does it work?

Machines produce sound waves while operating, and these waves can indicate equipment failure or an approaching critical point. The amplitude and character of these waves are specific to each machine. Even if the sound is too quiet for humans to hear in the initial phase of malfunction, sensors can detect abnormalities and predict when a failure is likely to occur.

 What can be detected?

This PdM technology is relatively cheaper compared to others, but it does have some limitations in terms of usage. It is widely used in the Gas & Oil industry to detect gas and liquid leaks. In the automotive industry, it is commonly used for detecting vacuum leaks, unwanted friction, and stress on machine parts.

Motor circuit analysis

 How does it work?

The technique works through electronic signature analysis (ESA). It involves measuring the supply voltage and operating current of an electronic engine. It allows locating and identifying problems related to the operation of electric engine components.

 What can be detected?

Motor circuit analysis is a powerful tool that helps identify issues related to various components, such as bearings, rotor, clutch, stator winding, or system load irregularities. The main advantage of this technique is its short testing time and convenience for the operator, as it can be carried out in just two minutes while the machine is running.

PdM oil analysis

 How does it work?

An effective method for Predictive Maintenance is to analyze oil samples from equipment without causing any damage. By analyzing the viscosity and size of the sample, along with detecting the presence or absence of third substances such as water, metals, acids or bases, we can obtain valuable information about mechanical damage, erosion or overheating of specific parts.

 What can be detected?

Detecting anomalies early is crucial for hydraulic systems that consist of rotating and lubricating parts, such as pistons in a vehicle engine. By identifying issues promptly, effective solutions can be developed and potential damage to the equipment or a failure can be prevented.

Computer vision

 How does it work?

Computer vision is revolutionizing the automotive industry by leveraging AI-based technology to enhance predictive maintenance processes. It achieves this by analyzing vast datasets, including real-time sensor data and historical performance records, to rapidly predict equipment wear and tear. By identifying patterns, detecting anomalies, and issuing early warnings for potential equipment issues, computer vision enables proactive maintenance scheduling.

 What can be detected?

In the automotive industry, computer vision technology plays a crucial role in detecting equipment wear and tear patterns to predict maintenance requirements. It can also identify manufacturing defects such as scratches or flaws, welding defects in automotive components, part dimensions and volumes to ensure quality control, surface defects related to painting, tire patterns to match with wheels, and objects for robotic guidance and automation.

Who and how can benefit from predictive maintenance

Smart maintenance systems analyze multiple variables and provide a comprehensive overview, which can benefit several stakeholders in the automotive industry. These stakeholders range from vehicle manufacturing factories and the supply chain to service and dealerships, rental companies, insurance companies, and drivers.

Below, we have outlined the primary benefits that these stakeholders can enjoy. In the OEMs section, we have provided examples of specific implementations and case studies from the market.

Car rentals

 Fleet health monitoring and better prediction of the service time

Managing service and repairs for a large number of vehicles can be costly and time-consuming for rental companies. When vehicles break down or are out of service while in the possession of customers, it can negatively impact the company’s revenue. To prevent this, car rental companies need constant insight into the condition of their vehicles and the ability to predict necessary maintenance. This allows them to manage their service plan more efficiently and minimize the risk of vehicle failure while on the road.

Car dealerships

 Reducing breakdown scenarios

Car dealerships use predictive maintenance primarily to anticipate mechanical issues before they develop into serious problems. This approach helps in ensuring that vehicles sold or serviced by them are in optimal condition, which aids in preventing breakdowns or major faults for the customer down the line. By analyzing data from the vehicle's onboard sensors and historical maintenance records, dealerships can identify patterns that signify potential future failures. Predictive maintenance also benefits dealerships by allowing for proactive communication with vehicle owners, reducing breakdown scenarios, and enhancing customer satisfaction

Vehicle owners

 Peace of mind

Periodic maintenance recommendations for vehicles are traditionally based on analyzing historical data from a large population of vehicle owners. However, each vehicle is used differently and could benefit from a tailored maintenance approach. Vehicles with high mileage or heavy usage should undergo more frequent oil changes than those that are used less frequently. By monitoring the actual vehicle condition and wear, owners can ensure that their vehicles are always at 100% and can better manage and plan for maintenance expenses.

Insurance companies

 Risk & fraud

By using data from smart maintenance systems, insurance companies can enhance their risk modeling. The analysis of this data allows insurers to identify the assets that are at higher risk of requiring maintenance or replacement and adjust their premiums accordingly. In addition, smart maintenance systems can detect any instances of tampering with the equipment or negligence in maintenance. This can aid insurers in recognizing fraudulent claims.

OEMs successful development of PdM systems

BMW Group case study

The German brand implements various predictive maintenance tools and technologies, such as sensors, data analytics, and artificial intelligence, to prevent production downtime, promote sustainability, and ensure efficient resource utilization in its global manufacturing network. These innovative, cloud-based solutions are playing a vital role in enhancing their manufacturing processes and improving overall productivity.

The BMW Group's approach involves:

  •     Forecasting phenomena and anomalies using a cloud-based platform.    Individual software modules within the platform can be easily switched on and off if necessary to instantly adapt to changing requirements. The high degree of standardization between individual components allows the system to be globally accessible. Moreover, it is highly scalable and allows new application scenarios to be easily implemented.
  •     Optimizing component replacements       (this uses advanced real-time data analytics).  
  •     Carrying out maintenance and service work in line with the requirements of the actual status of the system.  
  •     Anomaly detection using advanced AI predictive algorithms.  

Meanwhile, it should be taken into account that in BMW's body and paint shop alone, welding guns perform some 15,000 spot welds per day. At the BMW Group's plant in Regensburg, the conveyor systems' control units run 24/7. So any downtime is a huge loss.

→  SOURCE case study.

FORD case study

Predictive vehicle maintenance is one of the benefits offered to drivers and automotive service providers as part of Ford's partnerships with CARUSO and HIGH MOBILITY.  In late 2020, Ford announced two new connected car agreements to potentially enable vehicle owners to benefit from  a personalized third-party offer.

CARUSO and HIGH MOBILITY will function as an  online data platform that is completely independent of Ford and allows  third-party service providers secure and compliant access to vehicle-generated data. This access will, in turn, enable third-party providers to create personalized services for Ford vehicle owners. This will enable drivers to benefit from smarter  insurance, technical maintenance and roadside recovery.

Sharing vehicle data (warning codes, GPS location, etc.) via an  open platform is expected to be a way to maintain competitiveness in the connected mobility market.

→  SOURCE case study.

Predictive maintenance is the future of the automotive market

An effective PdM system means less time spent on equipment maintenance, saving on spare parts, eliminating unplanned downtime and improved management of company resources. And with that comes more efficient production and customers’ and employees’ satisfaction.

As the data shows, organizations that have implemented a PdM system report an average  decrease of 55% in unplanned equipment failures.  Another upside is that, compared to other connected car systems (such as infotainment systems), PdM is relatively easy to monetize. Data here can remain anonymous, and all parties involved in the production and operation of the vehicle reap the benefits.

Organizations have come to recognize the hefty returns on investment provided by predictive maintenance solutions and have thus adopted it on a global scale. According to Market Research Future, the global Predictive Maintenance market is projected to grow to  111.30 billion by 2030 , suggesting that further growth is possible in the future.

Read more
View all
Connect

Interested in our services?

Reach out for tailored solutions and expert guidance.

Stay updated with our newsletter

Subscribe for fresh insights and industry analysis.

About UsCase studiesContactCareers
Capabilities:
Legacy ModernizationData PlatformsArtificial Intelligence
Industries:
AutomotiveFinanceManufacturingAviation
Solutions:
DataboostrCloudboostr
Resources
BlogInsights
© Grape Up 2025
Cookies PolicyPrivacy PolicyTerms of use
Grape Up uses cookies

This website uses cookies to improve its user experience and provide personalized content for you. We use cookies for web analytics and advertising. You can accept these cookies by clicking "OK" or go to Details in order to manage your cookies preferences more precisely. To learn more, check out our Privacy and Cookies Policy

Accept allDetails
Grape Up uses cookies

Essential website cookies are necessary to provide you with services available through the website, autosave your settings and preferences, and to enhance the performance and security of the website - you have the right not to accept them through your web browser's settings, but your access to some functionality and areas of our website may be restricted.

Analytics cookies: (our own and third-party : Google, HotJar) – you can accept these cookies below:

Marketing cookies (third-party cookies: Hubspot, Facebook, LinkedIn) – you can accept these cookies below:

Ok