About us
Our services

Capabilities

Legacy Modernization
Data Platforms
AI & Advanced Analytics

Industries

Automotive
Finance
Manufacturing

Solutions

Databoostr

Data Sharing & Monetization Platform

Cloudboostr

Multicloud Enterprise Kubernetes

Looking for something else?

Contact us for tailored solutions and expert guidance.

Contact
Case studies
Resources

Resources

Blog

Read our blog and stay informed about the industry’s latest trends and technology.

Ready to find your breaking point?

Stay updated with our newsletter.

Subscribe

Insights

Ebooks

Explore our resources and learn about building modern software solutions from experts and practitioners.

Read more
Careers
Contact
Blog
Legacy modernization
Software development

5 Tips on how to deal with common problems when running large production environments

Tomasz Ćwięk
Expert Software Engineer
October 17, 2025
•
5 min read

Table of contents

Heading 2
Heading 3
Heading 4
Heading 5
Heading 6

Schedule a consultation with legacy modernization experts

Contact us

Working as a platform operator with cloud-native technologies, L2 technical support , and participating in CF installations give a unique opportunity to observe how different companies implement new technologies in their works and how they deal with running large production environments. Among various bad experiences, imperfect ideas, and the most reprehensible habits related to running and maintaining cloud infrastructures those listed below can generate the most complicated problems.

Bad practices often occur when it comes to productive CF infrastructures. However, these guidelines should help everyone who runs or uses any of the production-ready workloads.

Neglected capacity planning

Let’s start with this: you have to be aware that you will run out of resources eventually. Then you should plan how to scale up. If you run on-premises software, you should consider hardware and virtualization layer’s requirements. Proper sizing of the availability zones will always save you many problems.

On top of IaaS there is always a PaaS or some container orchestrator. The key to success here is to optimize all the limits, quotas and other configurations (like application scaling rules, etc.) so the microservices never consume available resources, even under high load.

It’s obvious that both hardware and virtualized capacity planning requires a buffer. You need to be prepared for issues, maintenance and infrastructure changes. There is no best configuration. It always depends on many factors but nevertheless, it is always worth taking into consideration.

Capacity and resources have to be monitored. A good monitoring tool with decent alerting rules will help you predict possible problems and react quickly if anything bad happens to your infrastructure.

Poor or no CI/CD

If you want to maintain any piece of software, don’t forget how valuable is automation. Many times people quit on CI/CD implementation because of the deadline or tasks formally more important. In most cases, it doesn't end up well.

It's hard to build, test and deploy software without automation. The manual process is highly exposed to the risk of human error. Apart from that, it is almost impossible to keep track of deployed software (version, updates, hotfixes, security patches, etc.) in large production environments. Sometimes you have to maintain CF platforms hosting 1K+ applications. Consider how problematic would be the migration process if there is a business decision to switch to a different solution.

For operators maintaining the infrastructures, platforms, and services used by developers it’s critical to keep everything up to date, take care of security patches and configuration changes. It is impossible to handle this manually with minimal or zero downtime of the services. That is why automated pipelines are so important, and you should never give up on implementing them in the first place.

Poor or no backup/restore procedures

Backup/restore is another important process that people often put in the background. You may think that your applications are safe if your IaaS offers you a highly available environment or containers you run have an auto-healing function. This is not true. Any disaster can happen, and in order to recover quickly, you have to create a well-defined backup and restore procedures that work. That’s not all, as the procedures have to be tested periodically. You need to be sure that backup/restore works fine since the process may depend on some external services that might have changed or just brake.

No periodic updates

Every software has to be updated regularly in order to keep it secure. It is also much safer to perform minor updates with a little chance of failure or downtime than doing ‘big jumps’. Major updates introduce higher risk, and it is hard to catch up with versions especially if there is no automation implemented.

You may see cloud infrastructures that were just installed and never upgraded and that generates a lot of issues for platform operators (users can’t see any difference). It is not a problem until everything works correctly. But after some time people may start escalating issues related to the versioning of the services. Unfortunately, it is too late to upgrade smoothly. It becomes a big spider’s web of dependencies. It may take weeks to plan the upgrade process and months to execute it.

Flawed architecture

Defective architecture generates serious problems. Many times developers are not aware of the issue until it shows up in production. After that, it’s really hard to admit the architecture needs to be changed and people often try to get rid of the effect instead of fixing the cause of the problem.

Let’s take a real-life example often faced. You may be receiving Prometheus alerts saying that ELK stack is overloaded. After investigating the issue, it may turn out that microservices are so verbose that they generate thousands of log messages per second. What if you raise the possible architecture problem, but nobody cares? As a result, you’ll have to scale ELK. In those cases, it may waste hundreds of CPUs and terabytes of memory and storage. That makes somebody spend money just to store 90% of useless data and maybe 10% of valuable information. This is really a simple way to put yourself in a situation without a way out.

Conclusion

Following these guidelines will definitely not be easy. Sometimes people responsible for making decisions are just not aware of the consequences of taking some actions. The role of every technically skilled person in the project is to spread the knowledge and make people aware of what may happen if they ignore those basic rules that matter. You can’t step back if you encounter such practices in the future. Be an example for others and drive change - it’s always worth trying.

Grape Up guides enterprises on their data-driven transformation journey

Ready to ship? Let's talk.

Check our offer
Blog

Check related articles

Read our blog and stay informed about the industry's latest trends and solutions.

Legacy modernization

Challenges of the legacy migration process and best practices to mitigate them

Legacy software is the backbone of many organizations, but as technology advances, these systems can become more of a burden than a benefit. Migrating from a legacy system to a modern solution is a daunting task fraught with challenges, from grappling with outdated code and conflicting stakeholder interests to managing dependencies on third-party vendors and ensuring compliance with stringent regulatory standards.

However, with the right strategies and leveraging advanced technologies like Generative AI, these challenges can be effectively mitigated.

Challenge #1: Limited knowledge of the legacy solution

The average lifespan of business software can vary widely depending on several factors, such as the type of software or the industry it serves. Nevertheless, no matter if the software is 5 or 25 years old, it is highly possible its creators and subject matter experts are not accessible anymore (or they barely remember what they built and how it really works), the documentation is incomplete, the code messy and the technology forgotten a long time ago.

Lack of knowledge of the legacy solution not only blocks its further development and maintenance but also negatively affects its migration – it significantly slows down the analysis and replacement process.

Mitigation:

The only way to understand what kind of functionality, processes and dependencies are covered by the legacy software and what really needs to get migrated is in-depth analysis. An extensive discovery phase initiating every migration project should cover:

  • interviews with the key users and knowledge keepers,
  • observations of the employees and daily operations performed within the system,
  • study of all the available documentation and resources,
  • source code examination.

The discovery phase, although long (and boring!), demanding, and very costly, is crucial for the migration project’s success. Therefore, it is not recommended to give in to the temptation to take any shortcuts there.

At Grape Up , we do not. We make sure we learn the legacy software in detail, optimizing the analytical efforts at the same time. We support the discovery process by leveraging Generative AI tools . They help us to understand the legacy spaghetti code, forgotten purpose, dependencies, and limitations. GenAI enables us to make use of existing incomplete documentation or to go through technologies that nobody has expertise in anymore. This approach significantly speeds the discovery phase up, making it smoother and more efficient.

Challenge #2: Blurry idea of the target solution & conflicting interests

Unfortunately, understanding the legacy software and having a complete idea of the target replacement are two separate things. A decision to build a new solution, especially in a corporate environment, usually encourages multiple stakeholders (representing different groups of interests) to promote their visions and ideas. Often conflicting, to be precise.

This nonlinear stream of contradicting requirements leads to an uncontrollable growth of the product backlog, which becomes extremely difficult to manage and prioritize. In consequence, efficient decision-making (essential for the product’s success) is barely possible.

Mitigation:

A strong Product Management community with a single product leader - empowered to make decisions and respected by the entire organization – is the key factor here. If combined with a matching delivery model (which may vary depending on a product & project specifics), it sets the goals and frames for the mission and guides its crew.

For huge legacy migration projects with a blurry scope, requiring constant validation and prioritization, an Agile-based, continuous discovery & delivery process is the only possible way to go. With a flexible product roadmap (adjusted on the fly), both creative and development teams work simultaneously, and regular feedback loops are established.

High pressure from the stakeholders always makes the Product Leader’s job difficult. Bold scope decisions become easier when MVP/MDP (Minimum Viable / Desirable Product) approach & MoSCoW (must-have, should-have, could-have, and won't-have, or will not have right now) prioritization technique are in place.

At Grape Up, we assist our clients with establishing and maintaining efficient product & project governance, supporting the in-house management team with our experienced consultants such as Business Analysts, Scrum Masters, Project Managers, or Proxy Product Owners.

Challenge #3: Strategical decisions impacting the future

Migrating the legacy software gives the organization a unique opportunity to sunset outdated technologies, remove all the infrastructural pain points, reach out for modern solutions, and sketch a completely new architecture.

However, these are very heavy decisions. They must not only address the current needs but also be adaptable to future growth. Wrong choices can result in technical debt, forcing another costly migration – much sooner than planned.

Mitigation:

A careful evaluation of the current and future needs is a good starting point for drafting the first technical roadmap and architecture. Conducting a SWOT analysis (Strengths, Weaknesses, Opportunities, Threats) for potential technologies and infrastructural choices provides a balanced view, helping to identify the most suitable options that align with the organization's long-term plan. For Grape Up, one of the key aspects of such an analysis is always industry trends.

Another crucial factor that supports this difficult decision-making process is maintaining technical documentation through Architectural Decision Records (ADRs). ADRs capture the rationale behind key decisions, ensuring that all stakeholders understand the choices made regarding technologies, frameworks, or architectures. This documentation serves as a valuable reference for future decisions and discussions, helping to avoid repeating past mistakes or unnecessary changes (e.g. when a new architect joins the team and pushes for his own technical preferences).

legacy system modernization Grape Up

Challenge #4: Dependencies and legacy 3 rd parties

When migrating from a legacy system, one of the significant challenges is managing dependencies with numerous other applications and services which are integrated with the old solution, and need to remain connected with the new one. Many of these are often provided by third-party vendors that may not be willing or able to quickly respond to our project’s needs and adapt to any changes, posing a significant risk to the migration process. Unfortunately, some of the dependencies are likely to be hidden and spotted not early enough, affecting the project’s budget and timeline.

Mitigation:

To mitigate this risk, it's essential to establish strong governance over third-party relationships before the project really begins. This includes forming solid partnerships and ensuring that clear contracts are in place, detailing the rules of cooperation and responsibilities. Prioritizing demands related to third-party integrations (such as API modifications, providing test environments, SLA, etc.), testing the connections early, and building time buffers into the migration plan are also crucial steps to reduce the impact of potential delays or issues.

Furthermore, leveraging Generative AI, which Grape Up does when migrating the legacy solution, can be a powerful tool in identifying and analyzing the complexities of these dependencies. Our consultants can also help to spot potential risks and suggest strategies to minimize disruptions, ensuring that third-party systems continue to function seamlessly during and after the migration.

Challenge #5: Lack of experience and sufficient resources

A legacy migration requires expertise and resources that most organizations lack internally. It is 100% natural. These kinds of tasks occur rarely; therefore, in most cases, owning a huge in-house IT department would be irrational.

Without prior experience in legacy migrations, internal teams may struggle with project initiation; for that reason, external support becomes necessary. Unfortunately, quite often, the involvement of vendors and contractors results in new challenges for the company by increasing its vulnerability (e.g., becoming dependent on externals, having data protection issues, etc.).

Mitigation:

To boost insufficient internal capabilities, it's essential to partner with experienced and trusted vendors who have a proven track record in legacy migrations. Their expertise can help navigate the complexities of the process while ensuring best practices are followed.

However, it's recommended to maintain a balance between internal and external resources to keep control over the project and avoid over-reliance on external parties. Involving multiple vendors can diversify the risk and prevent dependency on a single provider.

By leveraging Generative AI, Grape Up manages to optimize resource use, reducing the amount of manual work that consultants and developers do when migrating the legacy software. With a smaller external headcount involved, it is much easier for organizations to manage their projects and keep a healthy balance between their own resources and their partners.

Challenge #6: Budget and time pressure

Due to their size, complexity, and importance for the business, budget constraints and time pressure are always common challenges for legacy migration projects. Resources are typically insufficient to cover all the requirements (that keep on growing), unexpected expenses (that always pop up), and the need to meet hard deadlines. These pressures can result in compromised quality, incomplete migrations, or even the entire project’s failure if not managed effectively.

Mitigation:

Those are the other challenges where strong governance and effective product ownership would be helpful. Implementing an iterative approach with a focus on delivering an MVP (Minimum Viable Product) or MDP (Minimum Desirable Product) can help prioritize essential features and manage scope within the available budget and time.

For tracking convenience, it is useful to budget each feature or part of the system separately. It’s also important to build realistic time and financial buffers and continuously update estimates as the project progresses to account for unforeseen issues. There are multiple quick and sufficient (called “magic”) estimation methods that your team may use for that purpose, such as silent grouping.

As stated before, at Grape Up, we use Generative AI to reduce the workload on teams by analyzing the old solution and generating significant parts of the new one automatically. This helps to keep the project on track, even under tight budget and time constraints.

Challenge #7: Demanding validation process

A critical but typically disregarded and forgotten aspect of legacy migration is ensuring the new system meets not only all the business demands but also compliance, security, performance, and accessibility requirements. What if some of the implemented features appear to be illegal? Or our new system lets only a few concurrent users log in?

Without proper planning and continuous validation, these non-functional requirements can become major issues shortly before or after the release, putting the entire project at risk.

Mitigation:

Implementation of comprehensive validation, monitoring, and testing strategies from the project's early stages is a must. This should encompass both functional and non-functional requirements to ensure all aspects of the system are covered.

Efficient validation processes must not be a one-time activity but rather a regular occurrence. It also needs to involve a broad range of stakeholders and experts, such as:

  • representatives of different user groups (to verify if the system covers all the critical business functions and is adjusted to their specific needs – e.g. accessibility-related),
  • the legal department (to examine whether all the planned features are legally compliant),
  • quality assurance experts (to continuously perform all the necessary tests, including security and performance testing).

Prioritizing non-functional requirements, such as performance and security, is essential to prevent potential issues from undermining the project’s success. For each legacy migration, there are also individual, very project-specific dimensions of validation. At Grape Up, during the discovery phase our analysts empowered by GenAI take their time to recognize all the critical aspects of the new solution’s quality, proposing the right thresholds, testing tools, and validation methods.

Challenge #8: Data migration & rollout strategy

Migrating data from a legacy system is one of the most challenging tasks of a migration project, particularly when dealing with vast amounts of historical data accumulated over many years. It is complex and costly, requiring meticulous planning to avoid data loss, corruption, or inconsistency.

Additionally, the release of the new system can have a significant impact on customers, especially if not handled smoothly. The risk of encountering unforeseen issues during the rollout phase is high, which can lead to extended downtime, customer dissatisfaction, and a prolonged stabilization period.

Mitigation:

Firstly, it is essential to establish comprehensive data migration and rollout strategies early in the project. Perhaps migrating all historical data is not necessary? Selective migration can significantly reduce the complexity, cost, and time involved.

A base plan for the rollout is equally important to minimize customer impact. This includes careful scheduling of releases, thorough testing in staging environments that closely mimic production, and phased rollouts that allow for gradual transition rather than a big-bang approach.

At Grape Up, we strongly recommend investing in Continuous Integration and Continuous Delivery (CI/CD) pipelines that can streamline the release process, enabling automated testing, deployment, and quick iterations. Test automation ensures that any changes or fixes (that are always numerous when rolling out) are rapidly validated, reducing the risk of introducing new issues during subsequent releases.

Post-release, a hypercare phase is crucial to provide dedicated support and rapid response to any problems that arise. It involves close monitoring of the system’s performance, user feedback, and quick deployment of fixes as needed. By having a hypercare plan in place, the organization can ensure that any issues are addressed promptly, reducing the overall impact on customers and business operations.

Summary

Legacy migration is undoubtedly a complex and challenging process, but with careful planning, strong governance, and the right blend of internal and external expertise, it can be navigated successfully. By prioritizing critical aspects such as in-depth analysis, strategic decision-making, and robust validation processes, organizations can mitigate the risks involved and avoid common pitfalls.

Managing budgets and expenses effectively is crucial, as unforeseen costs can quickly escalate. Leveraging advanced technologies like Generative AI not only enhances the efficiency and accuracy of the migration process but also helps control costs by streamlining tasks and reducing the overall burden on resources.

At Grape Up, we understand the intricacies of legacy migration and are committed to helping our clients transition smoothly to modern solutions that support future growth and innovation. With the right strategies in place, your organization can move beyond the limitations of legacy systems, achieving a successful migration within budget while embracing a future of improved performance, scalability, and flexibility.

Read more
Legacy modernization
Software development

Choosing the right approach: How generative AI powers legacy system modernization

In today's rapidly evolving digital landscape, the need to modernize legacy systems and applications is becoming increasingly critical for organizations aiming to stay competitive. Once the backbone of business operations, legacy systems are now potential barriers to efficiency, innovation, and security.

As technology progresses, the gap between outdated systems and modern requirements widens, making modernization not just beneficial but essential.

This article provides an overview of different legacy system modernization approaches, including the emerging role of  generative AI (GenAI). We will explore how GenAI can enhance this process, making it not only faster and more cost-effective but also better aligned with current and future business needs.

Understanding legacy systems

Legacy systems are typically maintained due to their critical role in existing business operations. They often feature:

  •  Outdated technology stacks and programming languages.
  •  Inefficient and unstable performance.
  •  High susceptibility to security vulnerabilities due to outdated security measures.
  •  Significant maintenance costs and challenges in sourcing skilled personnel.
  •  Difficulty integrating with newer technologies and systems.

Currently, almost 66% of enterprises  continue to rely on outdated applications to run their key operations, and 60% use them for customer-facing tasks.

Why is this the case?

Primarily because of a lack of understanding of the older technology infrastructure and the technological difficulties associated with modernizing legacy systems. However, legacy application modernization is often essential. In fact,  70% of global CXOs consider mainframe and legacy modernization a top business priority.

The necessity of legacy software modernization

As technology rapidly evolves, businesses find it increasingly vital to update their aging infrastructure to keep pace with industry standards and consumer expectations. Legacy systems modernization is crucial for several reasons:

  •     Security Improvements    : Outdated software dependencies in older systems often lack updates, leaving critical bugs and security vulnerabilities unaddressed.
  •     Operational Efficiency    : Legacy systems can slow down operations with their inefficiencies and frequent maintenance needs.
  •     Cost Reduction    : Although initially costly, the long-term maintenance of outdated systems is often more expensive than modernizing them.
  •     Scalability and Flexibility    : Modern systems are better equipped to handle increasing loads and adapt to changing business needs.
  •     Innovation Enablement    : Modernized systems can support new technologies and innovations, allowing businesses to stay ahead in competitive markets.

Modernizing legacy code presents an opportunity to address multiple challenges from both a business and an IT standpoint, improving overall organizational performance and agility.

Different approaches to legacy modernization

When it comes to modernizing legacy systems, there are various approaches available to meet different organizational needs and objectives. These strategies can vary greatly depending on factors such as the current state of the legacy systems, business goals, budget constraints, and desired outcomes.

Some modernization efforts might focus on minimal disruption and cost, opting to integrate existing systems with new functionalities through APIs or lightly tweaking the system to fit a new operating environment. Other approaches might involve more extensive changes, such as completely redesigning the system architecture to incorporate  advanced technologies like microservices or even rebuilding the system from scratch to meet modern standards and capabilities.

Each approach has its own set of advantages, challenges, and implications for the business processes and IT landscape. The choice of strategy depends on balancing these factors with the long-term vision and immediate needs of the organization.

Rewriting legacy systems with generative AI

One of the approaches to legacy system modernization involves  rewriting the system's codebase from scratch while aiming to maintain or enhance its existing functionalities. This method is especially useful when the current system no longer meets the evolving standards of technology, efficiency, or security required by modern business environments.

By starting anew, organizations can leverage the latest technologies and architectures, making the system more adaptable and scalable to future needs.

Generative AI is particularly valuable in this context for several reasons:

  •     Uncovering hidden relations and understanding embedded business rules    : GenAI supports the analysis of legacy code to identify complex relationships and dependencies crucial for maintaining system interactions during modernization. It also deciphers embedded business rules, ensuring that vital functionalities are preserved and enhanced in the updated system.
  •     Improved accuracy    : GenAI enhances the accuracy of the modernization process by automating tasks such as code analysis and documentation, which reduces human errors and ensures a more precise translation of legacy functionalities to the new system.
  •     Optimization and performance    : With GenAI, the new code can be optimized for performance from the outset. It can integrate advanced algorithms that improve efficiency and adaptability, which are often lacking in older systems.
  •     Reducing development time and cost    : The automation capabilities of GenAI significantly reduce the time and resources needed for rewriting systems. Faster development cycles and fewer human hours needed for coding and testing lower the overall cost of the modernization project.
  •     Increasing security measures:    GenAI can help implement advanced security protocols in the new system, reducing the risk of data breaches and associated costs. This is crucial in today's digital environment, where security threats are increasingly sophisticated.

By integrating GenAI in this modernization approach, organizations can achieve a more streamlined transition to a modern system architecture, which is well-aligned with current and future business requirements. This ensures that the investment in modernization delivers substantial returns in terms of system performance, scalability, and maintenance costs.

Legacy system modernization with generative AI
 

How generative AI fits in legacy system modernization process

Generative AI enables faster speeds and provides a deeper understanding of the business context, which significantly boosts development across all phases, from design and business analysis to  code generation , testing, and verification.

Here's how GenAI transforms the modernization process:

1.  Analysis Phase

 Automated documentation and in-depth code analysis : GenAI's ability to assist in automatic documenting, reverse engineering, and extracting business logic from legacy codebases is a powerful capability for modernization projects. It overcomes the limitations of human memory and outdated documentation to help ensure a comprehensive understanding of existing systems before attempting to upgrade or replace them.

 Business-context awareness : By analyzing the production source code directly, GenAI helps comprehend the embedded business logic, which speeds up the migration process and improves the safety and accuracy of the transition.

2  . Preparatory Phase

 Tool compatibility and integration: GenAI tools can identify and integrate with many compatible development tools, recommend necessary plugins or extensions within supported environments, and enhance the existing development environment by automating routine tasks and providing intelligent code suggestions to support effective modernization efforts.

 LLM-assisted knowledge discovery : Large Language Models (LLMs) can be used to delve deep into a legacy system’s data and codebase to uncover critical insights and hidden patterns. This knowledge discovery process aids in understanding complex dependencies, business logic, and operational workflows embedded within the legacy system. This step is crucial for ensuring that all relevant data and functionalities are considered before beginning the migration, thereby reducing the risk of overlooking critical components.

3.  Migration/Implementation Phase

 Code generation and conversion : Using LLMs, GenAI aids in the design process by transforming outdated code into contemporary languages and frameworks, thereby improving the functionality and maintainability of applications.

 Automated testing and validation : GenAI supports the generation of comprehensive test cases to ensure that all new functionalities are verified against specified requirements and that the migrated system operates as intended. It helps identify and resolve potential issues early, ensuring a high level of accuracy and functionality before full deployment.

 Modularization and refactoring : GenAI can also help break down complex, monolithic applications into manageable modules, enhancing system maintainability and scalability. It identifies and suggests strategic refactoring for areas with excessive dependencies and scattered functionalities.

4.  Operations and Optimization Phase

 AI-driven monitoring and optimization : Once the system is live, GenAI continues to monitor its performance, optimizing operations and predicting potential failures before they occur. This proactive maintenance helps minimize downtime and improve system reliability.

 Continuous improvement and DevOps automation : GenAI facilitates continuous integration and deployment practices, automatically updating and refining the system to meet evolving business needs. It ensures that the modernized system is not only stable but also continually evolving with minimal manual intervention.

 Across All Phases

  •     Sprint execution support    : GenAI enhances agile sprint executions by providing tools for rapid feature development, bug fixes, and performance optimizations, ensuring that each sprint delivers maximum value.
  •     Security enhancements and compliance testing    : It identifies security vulnerabilities and compliance issues early in the development cycle, allowing for immediate remediation that aligns with industry standards.
  •     Predictive analytics for maintenance and monitoring    : It also helps anticipate potential system failures and performance bottlenecks using predictive analytics, suggesting proactive maintenance and optimizations to minimize downtime and improve system reliability.

Should enterprises use genAI in legacy system modernization?

To determine if GenAI is necessary for a specific modernization project, organizations should consider the complexity and scale of their legacy systems, the need for improved accuracy in the modernization process, and the strategic value of faster project execution.

If the existing systems are cumbersome and deeply intertwined with critical business operations, or if security, speed, and accuracy are priorities, then GenAI is likely an indispensable tool for ensuring successful modernization with optimal outcomes.

Conclusion

Generative AI significantly boosts the legacy system modernization process by introducing advanced capabilities that address a broad range of challenges. From automating documentation and code analysis in the analysis phase to supporting modularization and system integration during implementation, this technology provides critical support that speeds up modernization, ensures high system performance, and aligns with modern technological standards.

GenAI integration not only streamlines processes but also equips organizations to meet future challenges effectively, driving innovation and competitive advantage in a rapidly evolving digital landscape.

‍

Read more
View all
Connect

Interested in our services?

Reach out for tailored solutions and expert guidance.

Stay updated with our newsletter

Subscribe for fresh insights and industry analysis.

About UsCase studiesContactCareers
Capabilities:
Legacy ModernizationData PlatformsArtificial Intelligence
Industries:
AutomotiveFinanceManufacturing
Solutions:
DataboostrCloudboostr
Resources
BlogInsights
© Grape Up 2025
Cookies PolicyPrivacy PolicyTerms of use
Grape Up uses cookies

This website uses cookies to improve its user experience and provide personalized content for you. We use cookies for web analytics and advertising. You can accept these cookies by clicking "OK" or go to Details in order to manage your cookies preferences more precisely. To learn more, check out our Privacy and Cookies Policy

Accept allDetails
Grape Up uses cookies

Essential website cookies are necessary to provide you with services available through the website, autosave your settings and preferences, and to enhance the performance and security of the website - you have the right not to accept them through your web browser's settings, but your access to some functionality and areas of our website may be restricted.

Analytics cookies: (our own and third-party : Google, HotJar) – you can accept these cookies below:

Marketing cookies (third-party cookies: Hubspot, Facebook, LinkedIn) – you can accept these cookies below:

Ok